
frequently used as air speed indicators in aircraft.

Figure 12.7 Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are close together

and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2

has an opening on the side, and so the fluid has a speed across the opening; thus, pressure there drops. The difference in pressure at the

manometer is , and so is proportional to . (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot

tube.

12.3 The Most General Applications of Bernoulli’s Equation
Torricelli’s Theorem
Figure 12.8 shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is
negligible, the speed is just what it would be if the water fell a distance from the surface of the reservoir; the water’s speed is
independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant.
We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

Both and equal atmospheric pressure ( is atmospheric pressure because it is the pressure at the top of the reservoir.
must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure

different from atmospheric pressure.) and subtract out of the equation, leaving

Solving this equation for , noting that the density cancels (because the fluid is incompressible), yields

We let ; the equation then becomes

where is the height dropped by the water. This is simply a kinematic equation for any object falling a distance with negligible
resistance. In fluids, this last equation is called Torricelli’s theorem. Note that the result is independent of the velocity’s
direction, just as we found when applying conservation of energy to falling objects.
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Figure 12.8 (a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin;

http://www.ImagesFromBulgaria.com) (b) In the absence of significant resistance, water flows from the reservoir with the same speed it

would have if it fell the distance without friction. This is an example of Torricelli’s theorem.

Figure 12.9 Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the

nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue

of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.
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All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure.
The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See
Figure 12.9.)

EXAMPLE 12.5

Calculating Pressure: A Fire Hose Nozzle
Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s starting
at a gauge pressure of . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm.
Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle, respectively.
We must first find the speeds and . Since , we get

Similarly, we find

(This rather large speed is helpful in reaching the fire.) Now, taking to be zero, we solve Bernoulli’s equation for :

Substituting known values yields

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals
atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

Power in Fluid Flow
Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow,
consider Bernoulli’s equation:

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply
energy per unit volume by flow rate (volume per unit time), we get units of power. That is, . This means that if
we multiply Bernoulli’s equation by flow rate , we get power. In equation form, this is
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Each term has a clear physical meaning. For example, is the power supplied to a fluid, perhaps by a pump, to give it its
pressure . Similarly, is the power supplied to a fluid to give it its kinetic energy. And is the power going to
gravitational potential energy.

EXAMPLE 12.6

Calculating Power in a Moving Fluid
Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm diameter
coming from a hydrant with a pressure of . What power does the pump supply to the water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have the same
diameters and are at the same height, the pump does not change the speed of the water nor its height, and so the water’s kinetic
energy and gravitational potential energy are unchanged. That means the pump only supplies power to increase water pressure
by (from to ).

Solution

As discussed above, the power associated with pressure is

Discussion

Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value converts to
about 50 hp.) The pump in this example increases only the water’s pressure. If a pump—such as the heart—directly increases
velocity and height as well as pressure, we would have to calculate all three terms to find the power it supplies.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law
Laminar Flow and Viscosity
When you pour yourself a glass of juice, the liquid flows freely and quickly. But when you pour syrup on your pancakes, that
liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself and between the fluid and
its surroundings. We call this property of fluids viscosity. Juice has low viscosity, whereas syrup has high viscosity. In the
previous sections we have considered ideal fluids with little or no viscosity. In this section, we will investigate what factors,
including viscosity, affect the rate of fluid flow.

The precise definition of viscosity is based on laminar, or nonturbulent, flow. Before we can define viscosity, then, we need to
define laminar flow and turbulent flow. Figure 12.10 shows both types of flow. Laminar flow is characterized by the smooth flow
of the fluid in layers that do not mix. Turbulent flow, or turbulence, is characterized by eddies and swirls that mix layers of fluid
together.

12.39

Making Connections: Power
Power is defined as the rate of energy transferred, or . Fluid flow involves several types of power. Each type of power is
identified with a specific type of energy being expended or changed in form.
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